Multi-View Exclusive Unsupervised Dimension Reduction for Video-Based Facial Expression Recognition
نویسندگان
چکیده
Video-based facial expression recognition (FER) has recently received increased attention as a result of its widespread application. Many kinds of features have been proposed to represent different properties of facial expressions in videos. However the dimensionality of these features is usually high. In addition, due to the complexity of the information available in video sequences, using only one type of feature is often inadequate. How to effectively reduce the dimensionality and combine multi-view features thus becomes a challenging problem. In this paper, motivated by the recent success in exclusive feature selection, we first introduce exclusive group LASSO (EG-LASSO) to unsupervised dimension reduction (UDR). This leads to the proposed exclusive UDR (EUDR) framework, which allows arbitrary sparse structures on the feature space. To properly combine multiple kinds of features, we further extend EUDR to multi-view EUDR (MEUDR), where the structured sparsity is enforced at both intraand inter-view levels. In addition, combination weights are learned for all views to allow them to contribute differently to the final consensus presentation. A reliable solution is then obtained. Experiments on two challenging video-based FER datasets demonstrate the effectiveness of the proposed method.
منابع مشابه
بهبود مدل تفکیککننده منیفلدهای غیرخطی بهمنظور بازشناسی چهره با یک تصویر از هر فرد
Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...
متن کاملFacial expression recognition based on Local Binary Patterns
Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کامل